Мир вздохнул с облегчением. Биомедики создали суперустройство для плавания по кровотоку



Новое крошечное устройство способно нести разные сенсоры или лекарство. Оно умеет передвигаться в потоке жидкости контролируемым образом. При этом питание чип получает извне, что как раз и позволило сократить его размеры настолько, чтобы он мог проходить по крупным сосудам.

Ада Пун и её коллеги из Стэндфорда представили на Международной конференции по микросхемам (ISSCC) в Сан-Франциско прототипы беспроводных чипов-имплантатов. Они предназначены для медицинского обследования пациента, а в перспективе и для лечения, то есть доставки препаратов или выполнения микрохирургических операций (к примеру, чистки сосудов), пишет MEMBRANA.

В этой работе Пун прежде всего интересовала передача энергии на чип извне, сквозь кожу, жир и мышцы. Ведь такая передача позволяла избавить микроскопическую «подлодку» от громоздких и небезопасных (при коррозии корпуса) батарей.

Подобные системы передачи электричества ранее были успешно опробованы на стационарных имплантатах.

А вот зонд, плывущий в кровотоке, нуждался в особом решении, поскольку его приёмная антенна не могла быть слишком большой.

Ада со товарищи провели численное моделирование и установили, что взаимодействие человеческого тела с электромагнитными волнами не вполне такое, как представлялось раньше. Говоря упрощённо, группа Пун открыла, что высокочастотные волны определённого диапазона проникают в толщу тканей существенно глубже, чем можно было предположить.

Пун выяснила, что оптимальная частота для передачи энергии на имплантат находится в районе одного гигагерца. «Это примерно в 100 раз выше, чем считалось ранее», — утверждает Ада. Значит, антенна внутри плавающего чипа могла быть в сто раз мельче при той же передаваемой мощности, что и в низкочастотных системах с антеннами поперечником в сантиметры. В новых чипах антенну удалось уменьшить примерно до 2 мм2.

Стэндфордские специалисты разработали два типа плавающих имплантатов, отличающихся способом привода. Первый генерирует небольшой ток в самой крови. Ток взаимодействует с внешним полем и создаёт движущую силу. Второй тип использует нечто вроде микроскопического весла — маленькой проволочной петли, которая колеблется при попеременном прохождении через неё тока разной полярности.

Самоходный чип открывает новую главу в диагностике и терапии. «Возможностей для улучшения — масса. Предстоит выполнить немало работы, прежде чем эти устройства будут готовы для медицинского применения, — говорит Пун. — Но впервые за последние десятилетия возможность построения подвижных имплантатов кажется ближе, чем когда-либо».