Японские
физики нашли способ перевести уже известный материал KTaO3 в сверхпроводящее состояние.
Обычно задачу превращения полупроводников и диэлектриков в металлы или сверхпроводники решают химическим легированием — заменой атомов одного из элементов исходного соединения другими атомами с целью увеличения концентрации свободных носителей заряда n. К сожалению, химические методы далеко не всегда позволяют достичь нужной n, пишет
compulenta.ru.
Иногда в экспериментах применяют электростатическое легирование, которое также дает возможность повысить концентрацию носителей. К примеру, в 2008 году объединенная группа ученых из Швейцарии, Франции и Германии показала, что сверхпроводимость границы раздела двух диэлектриков (LaAlO3/SrTiO3) в структуре обычного полевого транзистора легко «контролируется» с помощью электрического поля. Ограничение на n здесь задается напряженностью поля (~106 В/см), при которой происходит пробой диэлектрика.
Более высокие значения напряженности достижимы в схеме, которую называют транзистором с двойным электрическим слоем (electric double-layer transistror, EDLT). Это устройство во многом напоминает полевой транзистор, но роль затворного диэлектрика в нем отводится жидкому электролиту. Когда в жидкость помещают подготовленный образец, ионы из электролита скапливаются у поверхности полупроводникового канала и образуют двойной электрический слой, который действует подобно конденсатору на границе раздела твердой и жидкой фаз. В такой конфигурации физики, выполнявшие опыты с диэлектриком SrTiO3, сумели увеличить концентрацию носителей до ~1014 см–2 и зарегистрировали сверхпроводящее состояние SrTiO3 при Т = 0,4 К.
KTaO3 очень похож на SrTiO3: материалы имеют структуру перовскита и аналогичные зонные структуры. При температуре в ~10 К в схеме обычного полевого транзистора KTaO3 можно перевести в металлическое состояние, но сделать его сверхпроводником еще никому не удавалось, хотя температуру пробовали опускать даже до 10 мК.
Изготовленные авторами с использованием монокристаллов KTaO3 образцы EDLT в нормальных условиях демонстрировали отличные транзисторные характеристики, а концентрация носителей, достигнутая при охлаждении, примерно на порядок превышала величину, которой ограничены возможности химического легирования. Когда температура опустилась до 70 мК, ученые отметили уменьшение слоевого сопротивления, и через некоторое время, при 35 мК, оно стало нулевым. Как и любой другой сверхпроводник, KTaO3 выходил из состояния с отсутствующим сопротивлением, если экспериментаторы прикладывали магнитное поле (в нашем случае его напряженность должна была превышать 5 Э).
Вероятно, с применением такой экспериментальной методики будет открыто еще несколько сверхпроводящих материалов.